

Faster CO₂, Response Curves with the LI-6800: **RACiR and Steady-state parameter estimate comparison**

Introduction

- Portable gas exchange systems, including the LI-6400XT and the LI-6800 are often used to perform CO₂ response curves. These data are often used to partition limitations of photosynthesis and to calculate parameters of the FVcB model (Farquhar *et al.,* 1980).
- Traditional CO₂ Response Curves measure Assimilation (A) and inter-cellular CO_2 (Ci) at a series of steady-state CO_2 concentrations. Practical recommendations for proper parameter estimation include 5 points per limiting region (Long & Bernacchi, 2003). At a typical measurement time of ~ 2 minutes per data point, each curve can take 30 – 40 minutes.
- The Rapid A Ci Response (RACiR) approach (Stinziano et al., 2017) is an instrument non-steady-state approach that rapidly changes in-coming CO_2 . This approach has the potential for faster response curves
- Here we compare parameter estimation between steady-state and RACiR CO₂ response curves, as well as compare different rates of altering CO₂ using the RACiR method.

Methods

*CO*₂ *Response Curves steady-state Comparisons*

Steady-state comparisons were performed near mid-day on field-grown Helianthus spp. Ambient temperature was ~30°C. Chamber conditions were matched as closely as possible between the instruments: LI-6400XT: constant H2OS (starting VPDleaf of 1.5 kPa), LI-6800: VPDleaf 1.5 kPa. In both instruments, leaf temperature was 30 °C, light intensity was 1500 µmol m⁻² s⁻¹. Leaves were acclimated at 400 µmol mol⁻¹ until steady-state A and gsw were achieved.

Steady-state [CO₂] were 400, 300, 200, 150, 100, 50, 400, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000. Data was logged if slope A and CO2_s was < 0.5 or at 120 seconds. RACiR curves used same conditions and ramped CO₂ in linear fashion at 100 umol mol⁻¹ minute⁻¹. Five leaves per each treatment were analyzed.

RACiR ramp rate comparisons

Comparisons were made on field-grown Helianthus spp. Similar chamber and acclimation conditions as above were used. CO_2 was linearly ramped to complete a 2000 \Im μ mol mol⁻¹ ramp in 20, 15 and 10 minutes.

Parameter Estimation

All parameter estimation was performed using the R plant ecophysiology package (Duursma, 2015) using all default values. Values reported are corrected to 25°C.

©2017 LI-COR, Inc. Presented at Ecological Society of America 2017. LI-COR is an ISO 9001 registered company. LI-COR is a registered trade- mark of LI-COR, Inc. All other trademarks belong to their respective owners.

method requires post-correction with empty chamber data

Douglas J. Lynch and Elizabeth P. Gordon

LI-COR Biosciences, 4421 Superior Street, Lincoln, NE 68504

*doug.lynch@licor.com

nax	V _{TPU}
± 10.5	14.7 ± 0.4
8±9.9	14.1 ± 0.7
± 20.8	13.6±1

 Table 3: Parameter estimates (mean ± S.E.) from RACiR 10 minute

 CO_2 Response Curves, using different portions of the curve, n = 3. See methods for description of curve fit. N.A. is not applicable as V_{TPLL} was not attempted to be fit with the 0 -500 data.

Results

	Total Time (minutes)	V _{c,max}	J _{max}
10 minute ramp 0- 2000 μmol mol ⁻¹	10	143.7 ± 5.4	344.6 ± 14
10 minute ramp 0- 1000 μmol mol ⁻¹	5	143.9 ± 3.4	337.8 ± 11
10 minute ramp 0- 500 μmol mol ⁻¹	2.5	146.4 ± 3.3	336.6 ± 15

Conclusions

- Faster CO₂ Response curves at high CO₂ limit stomatal response during the measurement.
- In this data-set, on a single species, important physiological parameters calculated from RACiR CO₂ response curves are not different to those calculated from steady-state CO₂ response curves.
- Depending on species, growth conditions and parameter of interest, RACiR response curves may be completed in as little as 2.5 minutes.

Reterences

Duursma RA (2015). "Plantecophys - An R Package for Analysing and Modelling Leaf Gas Exchange Data." _PLoS ONE_, *10*(11), pp. e0143346. doi: 10.1371/journal.pone.0143346 (URL:http://doi.org/10.1371/journal.pone.0143346). Farquhar, G. V., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. *Planta*, 149(1), 78-90.

Long, S. P., and C. J. Bernacchi. "Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error." Journal of experimental botany 54.392 (2003): 2393-2401. Stinziano, J. R., Morgan, P. B., Lynch, D. J., Saathoff, A. J., McDermitt, D. K., & Hanson, D. T. (2017). The rapid A–Ci response: photosynthesis in the phenomic era. *Plant, Cell & Environment*.

Figure 5: Example CO₂ Response Curve for 10 – 2010 umol mol⁻¹ RACiR ramp showing the different portions used for parameter estimation in Table 3. V_{TPU} 20.0 ± 0.4 20.0 ± 0.4 N.A. 5.1