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INTRODUCTION

 The latest 2017 model of CO2/H2O
flux research system, LI-7500DS, is a
streamlined, lower cost, lower
power version of the 2015 model, LI-
7500RS [1,2]

 Two 2015 flux research systems,
open-path LI-7500RS and enclosed
LI-7200RS, were in turn based on the
original LI-7500/A and LI-7200
analyzers [3,4]

 Both RS and DS flux research
systems include analyzers, but also
have important additional
functionality, significantly broader
than just measuring gas
concentrations:

 increased stability under
contamination and improved
temperature controls

 automation and standardization
of final flux calculations in real-time

 seamless integration with latest
tools for flux tower networking,
data sharing, and data analysis

AUTOMATED SYSTEMS

NEW OPEN-PATH LOW-POWER STANDARDIZED AUTOMATED CO2/H2O FLUX MEASUREMENT SYSTEM
George Burba*1,2, Israel Begashaw1, and James Kathilankal1

1LI-COR Biosciences, Lincoln, Nebraska, United States; 2School of Natural Resources, University of Nebraska-Lincoln, United States, *Corresponding author: george.burba@licor.com

RS: CONTAMINATION TESTS SUMMARY

 Field tests of RS systems were
conducted over six periods 5-14
months long, at 6 diverse sites, using
26 gas analyzers [1,2]

 Instrument-to-instrument variability
was reduced very significantly, 3-9
fold, in both open-path and enclosed
RS models vs originals

 In terms of contamination-related
drifts, the open-path LI-7500RS
system performed significantly
better than the original for both CO2

and H2O

 Improvements in CO2 drifts in open-
path RS were strong, with drifts few-
to-tens of times less than the original

 Improvements in H2O drifts were
particularly significant, with RS drifts
many tens of times less than the original

 Frequency response and hourly fluxes
were substantially similar between
the redesigned RS models and the
original

 LI-7500DS system retained all the
advantages of the RS models, but at
much lower power consumption, and
with reduced complexity and cost

 New models can significantly reduce
site maintenance and improve flux
data quality vs original models

Contamination-wise, DS has an identical design to RS
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 Automated flux systems output real-
time fully processed fluxes of CO2,
H2O, CH4, H, t, and auxiliary data [5]

 Low-power (1.5 W) weatherized field
microcomputer, SmartFlux3, runs
EddyPro same way as on desktop

 Fully configurable processing
includes Fourier Transform, spectra,
co-spectra, planar fit, progressive RH
corrections, etc.

 Onsite clocks synchronized with
PTP, clocks between stations are
synchronized using GPS [6]

 Flux network tool, FluxSuite, shows
status, fluxes, weather, flags etc.,
sends email alerts, and allows online
data access and data sharing across
the globe [see poster X1.59 on
Thursday, April 12, for details]

DS: POWER & SETUP

DS: WARM AND COLD SEASON CO-SPECTRA & FLUXES

DS: TEMPERATURE CONTROL

 Installable in the least frequent wind
direction at every individual site

Put all flow obstructions into 
least frequent wind direction

 Field tests at 3.5 m height
covered ambient temperatures
range from -19 to +36 C

 RS-DS Pair #1 was located 20 cm
from the anemometer

 RS-DS Pair #2 was located 42 cm
from the anemometer

 DS models performed similar or a
bit better (nss) than RS models in
terms of frequency response

 DS models performed similar
(nss) to RS in terms of fluxes

 Analyzer power consumption is reduced
to 4W nominal to help cut overall site
power

 LI-7550 box is eliminated to reduce cost,
complexity and power demand

 The system includes SmartFlux3
microcomputer to fully compute fluxes,
ogives, footprints etc., and merge these
with weather, soil and optical data

 Standard mount is provided to
minimize the flow distortion in the
anemometer and associated flux errors
[7-15]

Vertical 
component of 
air flow used in 
flux calculations 
is much less 
distorted
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 Temperature control of key electronics and optics is essential for reduction of
temperature drifts in infrared gas analyzers [16, 17] and associated flux errors

 Examples above show typical calibration curves for LI-7500RS and LI-75ooDS
determined by using a full set of calibration gases at each specific temperature

 All the curves on each plot overlay each other well, showing that the calibration
is consistent across the nearly 70 oC temperature range

 Such data are collected for each individual LI-COR IRGA as a part of routine
factory calibration
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DS: COLD SEASON UPTAKES

REFERENCES

CO2 Absorption/P

Vertical 
component of 
air flow used in 
flux calculations
can be severely
distorted

 Cold season tests covered ambient
temperatures range from -19 to 0 C; no
uptakes were expected over a dormant
and frozen ryegrass field

 Preliminary data suggest that LI-7500DS
surface heating impact is 3-5 times smaller
than that observed for LI-7500RS at cold
settings, and 55-60 times smaller than that
observed for the original LI-7500 model [4,18]

[1,2]

[1,2]

Uptake 
events

Average 
uptake

Cumulative impact 
on winter CO2 budget

Notes

absolute fraction
count mmol m-2 s-1 mmol m-2 %

Old LI-7500, 30 C 174 1.62 507.4 25.2% Typical, approx. from [18]

RS #1, cold 5 C setting 13 1.18 27.6 1.4% Improvements in LI-7500RS
vs. old LI-7500 are consistent
with the switch from 5 C to
30 Csettings forLI-7500A[19-21]

RS #2, cold 5 C setting 20 1.13 40.7 2.0%

DS #1, cold 5 C setting 7 0.74 9.3 0.5% Initial field results;
experiments continue

DS #2, cold 5 C setting 8 0.59 8.5 0.4%

DS #1 RS #1 DS #2RS #2

PAIR #1

PAIR #2


