Mobile measurement of fugitive CH₄ emissions using the LI-7810

Application Note

For researchers wanting to collect and visualize methane concentration data associated with either multiple fixed locations, or while walking or driving, there are several analyzer options available, as well as associated tools to process and visualize resulting data. With regards to the choice of methane analyzer, the LI-7810 $CH_4/CO_2/H_2O$ Trace Gas Analyzer is particularly well-suited to such applications.

Figure 1. LI-7810 Trace Gas Analyzer and backpack harness.

With sub-ppb precision in less than one second, the analyzer can record very small changes in methane concentration above background levels, making the detection of methane emissions at very low levels a possibility. Importantly, because of its extremely low-volume optical cavity design, with a volume of just 6.41 cm³, the analyzer delivers response time ($T_{10-90\%}$) of <2 seconds. This is significant when moving at higher velocities when in a vehicle, or where you may be crossing narrow emissions plumes, resulting in transient increases in methane concentration.

To achieve the desired result, as shown in Figure 2 below, time synchronized concentration and Global Positioning System (GPS) data are required. Once methane concentration data and GPS data have been collected, you can visualize the data with a suitable mapping tool. Google Earth Pro provides an accessible and free to use platform for such an application. The LI-7810 is not fitted with an internal GPS. You can use an independent GPS device with the LI-7810 that meets the measurement frequency and precision needed for your research, with data from both devices synchronized in post-processing. The following describes two different case studies where an external GPS was used to collect position data, then synchronized with data from an LI-7810.

Figure 2. Example CH_4 concentration map, visualized in Google Earth Pro.

Here we describe the essential, basic hardware and software required to achieve a result such as that presented in Figure 2 above, along with step-by-step instructions for applying these options to deliver the desired result.

Required equipment and software

We used the following hardware and software tools to measure and record methane concentration data and GPS data, synchronize these data sets, convert the data sets to the Keyhole Markup Language (KML) file format, and finally visualize the resulting data set using Google Earth Pro:

1 LI-7810 Trace Gas Analyzer, with optional backpack harness for walk-around surveys.

2 Global Positioning System

We tested two options for GPS:

- a Garmin eTrex 10 handheld GPS https://buy.garmin.com/en-US/US/p/87768
- b Trails GPS app for iPhone, available in the Apple App Store - https://apps.apple.com/gb/app/trailsoutdoor-gps-logbook/id913277014
- 3 Microsoft Excel
- 4 GEGraph -

http://www.sgrillo.net/googleearth/gegraph.htm

5 Google Earth Pro https://www.google.co.uk/earth/download/gep/agree .html

Methods

The following describes the complete process of visualizing concentration and GPS data in two different case studies. The first is with the Garmin eTrex 10 handheld GPS. The second case study demonstrates how to run the iPhone Trails app and download data in GPX format. The data can then be processed in a similar fashion to that detailed for the Garmin eTrex 10.

During testing, we found that in a non-urban environment, the Garmin eTrex 10 delivers reliable data at 1 Hz without dropouts. The Trails app provided good accuracy in terms of location, and at times data were delivered at a steady 1 Hz rate, but data dropout was frequent, even at walking pace.

Before following this method, please familiarize yourself with manuals for the LI-7810 and Garmin eTrex 10 and use of the products themselves. The step-by-step instructions that follow will be significantly clearer as a result.

Case Study 1: Methane Concentration and GPS Data Visualization Using the LI-7810 and Garmin eTrex 10

1 Initial Set-up of GPS and LI-7810

Unless otherwise stated, navigation is affected using the joystick on the front panel as shown in Figure 3 below, with commands entered by clicking this joystick.

Figure 3. Garmin eTrex 10 handheld GPS.

Firstly, set up the unit to record data at a fixed time interval of one second: Setup > Tracks > Record Method – Time > Set Recording Interval to 00:00:01.

To view time on the Map screen of the Garmin GPS, follow the following steps: Setup > Map > Data Fields > 1 large > Back (side button) > Back (side button) > Map > Menu (side button) > Change Data Fields > Select > Time of Day

Prior to starting either a walking or driving survey, it is important to manually synchronize the time set on the LI-7810 with that on the Garmin device. It is not possible to automate this process or manually adjust the time on the Garmin GPS since time is acquired via the satellite connection. Time on the LI-7810 can be manually set via the Network Control panel.

2 Record and Export GPS Data

Initiate recording of a walk or drive as follows: Map > Hold down stick > Select Map > Select Go

To complete and save recording of a walk or drive, follow these steps:

Push back side button to leave Map > Track Manager > Current Track > Save Track > Name and save file > Delete current track to clear data (important as this file includes data from all tracks recorded unless cleared). When saved, the file will be exported in GPX format.

Merging methane concentration data and GPS data in Excel

After you have downloaded the LI-7810 data file and GPX file, load the GPX file in Excel, and do the following:

- 1 Connect the Garmin GPS to a laptop via the USB cable supplied with the unit.
- **2** Open Microsoft Excel and load the GPS data file.

Click File > Open > Browse to Garmin eTrex 10 > Garmin > GPX > Select file in default folder and Open.

- 3 Ignore file format warning. Select Yes.
- 4 Select OK to open As an XML Table.

- 5 Ignore schema source warning. Select OK.
- 6 You will see a Worksheet populated as in Figure 4 below. We are interested in columns H and I (containing latitude and longitude data) and column K (containing time data), highlighted in red.

Figure 4. Garmin GPS data exported to Microsoft Excel via GPX file format.

We need to combine the latitude, longitude, and time data in this file with methane concentration data collected by the LI-7810.

To import LI-7810 data into Excel, work through the following steps:

- 1 Open Microsoft Excel and load the LI-7810 data file.
- 2 Click File > Open > Browse to relevant folder > Select 'All Files' at bottom right to see data file > Open data text file.
- 3 Use default Delimited and click Next.
- 4 Use default Tab delimited and click Next.
- **5** Use default General Column data format and click Finish.
- 6 You will see a Worksheet populated as in Figure 5 below. We are interested in the time data (in this case column G) and methane concentration data (in this case column J), highlighted in red.

										1 1.4														
File	Hor	ne Inse	t Page	Layout	Formulas	Data	Review	ńew H	elp												e	Share	Com	ments
PA.	Xor		-			107 107			10 Idean Tree		Course .						con d	η Σ	AutoSum	· Ac		R I	158	
<u> </u>	Date	ov v	Cander			0.0	- =	× 1	(p wrop ies		oese a		· •	. u	30 H.S		U	-	Fill	Z U /	~	~		
Paste	Acres		8 I	1 - E	- 0	- <u>A</u> -	EEE	13 H B	Merpe &	Center ~	FR - %	9 %	cond	tional Form	sat as Cel	Insert	Delete Fo	mat D	Clear v	Sort & Fi	nd &	deas		
	¥10	FRAL POINTS											Zuma	ang - iau	ac. solars			- I T		11101 - 50	eu -			
	Cipboa	d	1 21	Fort		16		Alignmen	nt	14	Nu	nber	14	Styles			Cells		ic	sting		deas	Seestivity	^
A1				fr Mo	del:																			~
4	٨		c	D	F	F	6	н	1.1	1.1	×	1.1	м	N	0	P	0	8	s	т		v	w	
1 M	ndelt	11-7810					-								-									
2 51		TG10-010	42																					
3 50	ftware'	2.0.13																						
4 Te	nestam	ALTOALT																						
5 Tir	nezone	UTC					_			\sim														
6 DA	TAH	SECONDS	NANOSEC	NDX	DIAG	DATE	TIME	20	CO2	CH4	AVITY_P	CAVITY_T	LASER_PH	LASER_T	RESIDUAL	RING_DOV	THERMAL	PHASE_EP	R LASER_T_	SINPUT_VO	CHK			
7 DA	UAT	secs	nsecs	index	diag	date	time	pm	ppm	ppb	Pa	-c	kPa	-C		Trees	-c	counts	-C	v	CHK			
8 DA	(TA	1.59E+09	86741924	5443		12	08:35:32	11944.8	931.72	2155.82	33.8751	46.4045	28.6239	41.2429	0.010549	12.6637	46.2268	-1175.75	5 16.9438	12.8165	3	6		
9 DA	(TA	1.59E+09	85741924	5447		19 8208822	08:35:33	11933.1	849.91	2142.32	39.8771	46.4193	28.6125	41.2427	0.008774	12.6634	46.2412	-1053.5	5 16.9438	12.8157	1	ő		
10 DA	ITA	1.595+09	85741924	5453		LS ATIMATE	08:35:34	11956.8	\$34.89	2144.93	39.8775	46.434	28.6023	41.2427	0.008861	12.6626	46.256	-974.25	16.9438	12.8153	20	4		
11 DA	UTA	1.59E+09	85741924	5455		18 APPARTU	08:35:35	11972.5	829.563	2147.64	33,8787	46.4493	28.5917	41.2427	0.008954	12.6624	46.2715	-864	16.9438	12.8149	17	3		
12 DA	(TA	1.59E+09	85741924	5459		18 AUDADU	08:35:36	11281.7	1425	2011.48	39.8767	46.4648	28.5828	41.4152	0.02658	-1588.9	46.2871	-202.75	17.1708	12.8137	23	8		
13 DA	ITA	1.595+09	85741924	5463		S1 APPARENT	08:35:37	9845.64	2493.65	1732.85	39.8771	46.4796	28.5877	41.4817	0.053798	-1523.58	46.3019	1213.25	17.1708	12.8134	6	3		
14 DA	(TA	1.59E+09	86523056	5467		19 AUDALU	08:35:38	11212.5	1660.9	2022.03	39,8771	46.4946	28.5983	41,4711	0.029241	12.4394	46.3169	529.5	17.1708	12,813	7)		
15 DA	(TA	1.59E+09	86523056	5473		19 AUDADU	08:35:39	11930.1	964.765	2152.6	39.8828	46.5090	28.5999	41,4692	0.005332	12.4396	46.3322	185.25	17.1708	12.8126	20	5		
16 DA	UTA	1.59E+09	86523056	5475		19 ABBARBE	08:35:40	11979.5	906.154	2162.15	33.8775	46.5245	28.6027	41.469	0.005468	12.4411	46.347	-268.25	17.1708	12.8118	17	٤		
17 04	ITA	1.59€+09	86523056	5479		LS ATTAATT	08:35:41	11983	898.003	2164.17	39,8755	46.5386	28.5966	41.469	0.005624	12,441	46.3611	-777.25	17.1708	12.8114	9	2		
18 CM	TA	1.59E+09	86523056	5483		18 ATTANTE	08:35:42	11187.3	1550.14	2006.73	39,8751	46.5533	28.5909	41.6054	0.026269	-2516.89	46.3758	-327.5	17.334	12,8105	16	>		
19 DA	UA.	1.596+09	8652,9056	5487		18 41004110	08:35:43	10369.6	5 1642.24	1836.24	39.8775	46.5675	28.5934	41.6443	0.048163	-2834.81	40.3900	586.75	17.336	12,809	15	2		
20 04	ITA	1.59€+09	86523056	5491		19 AUDALU	08:35:44	11435	1083.92	2077.03	39.8812	46.5828	28.5991	41.6357	0.020571	12.6464	46.4057	321.25	17.336	12.8085	2)		
21 DA	TA	1.590+09	86304903	5495		19 ATMATT	03:35:45	11832.9	9 1105.61	2165.09	39,8771	46.59	28.6003	41.6344	0.005143	12.6474	46.4207	-127.75	17.334	12,8083	15			
22 04	UA	1.59£+09	86304903	5499		19 APPARTU	08:35:46	11866.5	1127.2	21/4.65	39,8755	46.6128	28.597	41.6355	0.00553	12.6464	46,4357	-577.25	17.3657	12.8079		>		
23 04	TA	1.59€+09	85304903	5503		50 AUDABU	08:35:47	10570.2	720.501	1890.4	39,8775	46.6282	28.5913	41.762	0.040874	-2945.35	46.4512	35	17.4549	12.8075	17)		
24 DA	ITA	1.591+09	86304903	5507		51 AUUADU	08:35:48	10231.3	344.848	1785.49	39.8771	40.0434	28.5934	41.7573	0.053845	12.6506	46.4064	222.25	17.4549	12.8067	19	5		
25 04	UA	1.59E+09	85304903	5511		19 ATOATT	08:35:49	11637.1	1151.19	2160.57	31,8775	46.6577	28.5958	41.7535	0.009541	12.6501	46.4807	-111.25	17.4549	12.8059	23	1		
20 04	LIA	1.59E+09	89104903	5515		la suppose	08:35:50	11727.3	1151.61	2177.51	39.8799	45.672	28.5934	41.7531	0.005464	12.6507	40.4952	-373	17.4549	12.8051	6	1		
21 04	ALM.	1.596+09	00304903	5519		C2 40000000	08:35:51	11/51.2	1158.2	2182.08	33.8783	40.0385	20.5889	41.7726	0.005867	12.6512	+0.5102	-580	17.5063	12.8035	13			
28 04	UA.	1.59€+09	85304903	5523		S) APPRATE	08:35:52	10252.8	\$ 572.14	1//3	39,8755	46.7010	28.5848	41.8683	0.054727	12.6766	40.5248	104.25	17.5578	12,8035		-		
23 DA	un.	1.59E+09	data	5527			00:35:53	11125.9	× 9/1.033	1968.46	36.077	40.7164	28.5865	41.8585	0.034719	12.6848	40.5398	-205.25	17.5570	12.8035	1			
	- L	1004	100.00	()			_																	

Figure 5. LI-7810 data exported to Microsoft Excel via DATA file format.

At this point we need to bring the relevant data together in a single Worksheet, ready for export to GEGraph as follows:

- 1 Open a new Workbook in Microsoft Excel
- 2 Set up four tabs:
 - a TGA data.
 - **b** GPS data.
 - c Combined data.
 - d Data for GEGraph.
- Copy time and concentration data from the TGA data file to the TGA data Worksheet in the new Workbook. Time in Column A, concentration in Column B.
- 4 Copy lat, long, and ns1:time2 data from the GPS data file to the GPS data Worksheet in the new Workbook. Ensure ns1:time2 data is in Column A, lat in Column B, and long in Column C.
- **5** Remove text in time cells in the GPS data worksheet to obtain same format as TGA data:
 - a Select all data in Column A (ns1:time2).
 - **b** Click Find & Select.
 - c Click Replace.
 - **d** In 'Find what' field enter the date on which the data was recorded followed by T, so YYYY-MM-DDT. Leave 'Replace with' field blank.
 - e Click 'Replace All'.
 - f Repeat steps d & e, this time entering Z rather than the date+T. You will now have time, lat, and long data in columns A, B, and C.
- 6 Next copy and paste the time data and concentration data in Columns A and B from the TGA data Work-sheet to Column A and B of the Combined data Work-sheet.
- Now use the VLOOKUP function to bring across the lat and long data into the Combined data worksheet. This will allow the matching of time, concentration, lat, and long data, considering any dropouts in the GPS data.
- 8 In cell C1 enter the following =VLOOKUP(A1,'GPS data'!\$A\$1:\$B\$X,2,FALSE)
- **9** Double click on the bottom right of cell C1 to populate lat data for all rows.
- 10 In cell D1 enter the following =VLOOKUP(A1,'GPS data'!\$A\$1:\$C\$X,3,FALSE)
- **11** Double click on the bottom right of cell D1 to populate long data for all rows.
- 12 Where X is the final row in the GPS data Worksheet data set.

- **13** Finally, to prepare the data for cut and paste into GEGraph, transpose Column B (concentration data) to Column E, leaving Column B cells empty.
- 14 If you wish to visualize values only when they are above the background concentration, an additional step can be applied to subtract this from the concentration values. One approach is to find the minimum concentration in the data set and subtract this from all values. The minimum value can be found using '=MIN(number1, number2,...)'.

Using GEGraph to visualize data in Google Earth Pro

The data can now be visualized in Google Earth Pro via GEGraph:

- 1 Open GEGraph.
- 2 In the example set-up shown in Figure 4 below, we have set the footprint of the bar chart elements (polygons) to be constant and set this to two meters; in this case with a square base, polygon sides 4. Height is set to be according to value. The fill and outline of the polygons have been set to red.

Figure 6. GEGraph. Set-up for visualizing concentration and GPS data in Google Earth Pro.

- Data can now be cut and pasted from Excel into GEGraph. Select all data in Columns B,C,D, and E in the Combined data Worksheet, omitting the first row if this includes column headings. Copy data.
- 2 In GEGraph, click in the first cell on the first row. Click 'Paste values' button.
- 3 Click Run.
- 4 Enter a filename and click Save.
- 5 The file will be saved and Google Earth Pro launched automatically. Data will be visualized, as shown in the example in Figure 5 below.

Figure 7. Example methane concentration and GPS data visualized in Google Earth Pro using Microsoft Excel and GEGraph.

Case Study 2: Methane Concentration and GPS Data Visualization Using the LI-7810 and Trails iPhone App

The Trails app is set to 1 Hz data recording by default. When using Trails, or an alternative GPS smart phone application, we would suggest testing the application at the frequency of the measurement you need, to ensure consistency throughout the measuring period. As with the Garmin GPS, LI-7810 and iPhone, times must be manually synchronized. Time can be adjusted on either device to match the other.

Follow the application instructions to record GPS data during your survey. After GPS is recorded on the Trails, or similar application, you can retrieve it through your personal device or via email or a messaging service. The GPX file can then be processed in a similar way to the GPX file generated by the Garmin eTrex 10.

References

Monitoring Methane Emissions with a Mobile Testing Facility. See how The United Kingdom's National Physical Laboratory and Royal Holloway, University of London assessed a mobile method for quantifying greenhouse gas emissions with the LI-7810 Trace Gas Analyzer at licor.com/env/products/trace_gas/mobile-testing-facility

Measuring Greenhouse Gas Emissions at Oktoberfest.

Learn how Prof. Chen and her team at the Technical University of Munich investigated the relationship between Oktoberfest and greenhouse gas emissions using the LI-7810 Trace Gas Analyzer at licor.com/env/products/trace_ gas/oktoberfest

Soil Gas Flux Studies: For soil chamber survey measurements, LI-COR's Smart Chamber features integrated GPS, and the flux calculation software SoilFluxPro, which includes data visualization via Google Earth Pro. Further details regarding the Smart Chamber can be found here licor.com/env/products/soil_flux/survey.html – while information concerning SoilFluxPro is available here licor.com/env/products/soil_flux/soilfluxpro.

LI-COR Biosciences

4647 Superior Street Lincoln, Nebraska 68504 Phone: +1-402-467-3576 Toll free: 800-447-3576 (U.S. and Canada) envsales@licor.com

LI-COR Distributor Network: www.licor.com/env/distributors

Regional Offices

LI-COR Biosciences GmbH

Siemensstraße 25A 61352 Bad Homburg Germany Phone: +49 (0) 6172 17 17 771 envsales-gmbh@licor.com

LI-COR Biosciences UK Ltd.

St. John's Innovation Centre Cowley Road Cambridge CB4 0WS United Kingdom Phone: +44 (0) 1223 422102 envsales-UK@licor.com

Copyright © 2020 LI-COR, Inc. All rights reserved. 979-19194 07/2020