
Using 8200-104/C Chambers with
User-Built Systems

Contents
Chamber control kit 1
Pneumatics 1
Commands 5
Identify 5
Chamber 5
Measurement 5
Configuration 5
Query Configuration 6
State 7
SDI-12 7

Errors 7
Diagnostic Code 8
Resources 8

The 8200-104 Opaque Long-Term Chamber and 8200-104C
Clear Long-Term Chamber are closed-transient chambers
built for long-term field deployment. Researchers typically
use these chambers in an LI-8250 Multiplexer system. The
multiplexer manages gas flow, controls operation, and col-
lects data from chambers and their auxiliary sensors.

However, there may be applications where you would like to
use the 8200-104/C long-term chambers with a user-built con-
troller or manifold system. In this case, you must develop the
system to control the chamber, collect the data, and process
the data.

This application note details how to power and communicate
with the 8200-104/C chambers. You can find more inform-
ation about installing the chambers in the field and con-
necting sensors in the LI-8250 Instruction Manual.

Chamber control kit
Part number 8200-401

LI-COR provides a kit with the necessary components to
interface a user-built controller with an 8200-104/C long-term
chamber for standalone applications. The 8200-401 Long-
Term Chamber Control Kit enables you to interface with one
8200-104/C long-term chamber. Each 8200-104/C long-term
chamber will require its own kit (see Table 1).

Part # Description

310-16700
Bulkhead adapter; 8-pin connector with bare leads;
Connects the 15-meter chamber cable to a system
controller and power supply.

9982-056
Cable assembly; 15-meter cable-and-tubing bundle
with weather-proof connectors, quick-connect fit-
tings, and a cable for power and communication.

300-07126
Quick-connect recepticle; Connects to the insert of
the Bev-A-Line® tubing in the cable assembly.

300-07127
Quick-connect insert; Connects to the receptical of
the Bev-A-Line® tubing on the cable assembly.

167-07256
Seal washer (2); To seal the quick-connect bulkheads
to an enclosure.

Table 1. Parts included in the 8200-401 Long-Term Cham-
ber Control Kit .

Pneumatics
The 8200-104/C long-term chambers and the cable assembly
(part number 9982-056) use quick-connect fittings to attach
pneumatic lines. On the chamber or the controller end of the
cable assembly, the quick-connect receptical provides airflow
to the chamber (see Table 1).

For reference, the flow rate through the chamber provided
by the LI-8250 Multiplexer and the cable assembly is ~2.8
SLPM. For a smooth surface under the chamber, good mix-
ing is expected at flow rates down to 1.7 SLPM. Below that
flow rate, good mixing is not guaranteed.

Power
The chamber requires a nominal 24 VDC power supply. If
input voltage goes below 17 VDC, the chamber will report a
power supply error, and below 14.5 VDC, the chamber will
shut down. If input voltage goes above 28 VDC, it will dam-
age the chamber electronics. Note that these voltages are spe-
cified as supplied at the chamber. When using the LI-COR
cable assembly, there will be some resistance (2.4 to 2.8
ohms) which will result in a small voltage drop.

The nominal power draw by the chamber is ~0.4 watts when
the chamber is not moving. During normal chamber move-
ment, power demand will increase to about 7.5 watts. If
chamber movement is obstructed, power demand will peak

1

Application Note

at 24 watts and will cycle between ~0 and 24 watts over 2 to
3 seconds.

To connect the combined power and data cable between the
chamber and system controller, connect the bare leads from
the 8-pin bulkhead adapter (part number 310-16700) to the
terminals on the controller (see Table 2). Connect the bulk-
head adapter to the 15-meter cable (part number 9982-056),
then connect the cable to the chamber.

Figure 1. The bulkhead adapter connects to your sys-
tem controller and the 15-meter cable. The cable con-
nects to the chamber.

Pin # Controller Chamber Bulkhead Wire Color

1 RX- TX- White/Blue
2 TX- RX- White/Brown
3 TX+ RX+ Brown
4 +24 VDC Power input Orange
5 Ground Ground White/Green
6 +24 VDC Power input White/Orange
7 RX+ TX+ Blue
8 Ground Ground Green

Table 2. Pin assignment for the bulkhead adapter and
functions on the controller and chamber.

Serial interface
The chamber uses full-duplex RS-422 operating at 115,200
baud to communicate with a controller. Few off-the-shelf
platforms typically used in user-built controllers offer native
hardware support for RS-422. For these platforms, you will
need an adapter to convert between RS-422 and a supported
hardware communication interface.

There are several such adapters available through third-party
suppliers that you can use to convert RS-422 to RS-232, USB,
or TTL. We have tested adapters from CommFront
(commfront.com) and Zihatec (hwhardsoft.de) and verified
compatibility with the chamber. See Table 3 and Table 4 for
configuration and wiring of the Zihatec adapters.

For those interfacing to platforms such as Arduino or Rasp-
berry Pi, an RS-422 to TTL adapter is recommended. The
TTL output from the adapter should be connected to a phys-
ical serial UART on these devices. Note that for Arduino spe-
cifically, the software emulated serial ports (such as those
provided by the AltSoftSerial library) are not fast enough at
the chamber’s baud rate, leading to message corruption. For
making a TTL connection to the platform’s serial port, be

mindful of the TTL voltage levels supplied by the adapter.
Raspberry Pi, for example, only supports a 3.3 VDC max-
imum input on its GPIO pins, whereas many TTL devices
will output a maximum of 5 VDC.

SW1 SW2 SW3

Channel Setting Channel Setting Channel Setting

1 On 1 On 1 On
2 Off 2 On 2 Off
3 On 3 Off 3 Off
4 Off 4 Off 4 Off

Table 3. DIP switch settings for the Zihatec RS-422/RS-
485 Arduino Shield or Raspberry Pi Hat.

Input Terminal Strip Pin Flying Lead Wire Color

B White/Blue
A Blue
Z White/Brown
Y Brown
Shield No connection

Table 4. Bulkhead flying lead (part number 310-16700) to
Zihatec RS-422/RS-485 Arduino Shield or Raspberry Pi Hat
connections.

For those interfacing to a computer or other device via USB,
a flying lead RS-422 to USB adapter is available from LI-COR
(part number 392-16348). Connections for the USB adapter
to the 310-16700 bulkhead are in Table 5.

Bulkhead Wire
Color

Adapter Chamber
USB Adapter
Wire Color

White/Blue RX- TX- White
White/Brown TX- RX- Red
Brown TX+ RX+ Orange
Orange Power input
White/Green Ground Ground Black
White/Orange Power input
Blue RX+ TX+ Yellow
Green Ground Ground Black

Table 5. Connections between the RS-422-to-USB
adapter and bulkhead bare leads. Note that the chamber
requires a separate power supply.

Messaging
Messages sent between a user-built controller and an 8200-
104/C chamber have a five-part structure. Each message
begins with an origin identifier, followed by a sequence num-
ber, checksum, and JSON object. All messages are terminated
with a newline character (ASCII 10).

2

https://www.commfront.com/
https://www.hwhardsoft.de/

Origin
The origin defines the source of the message. For messages
originating from an 8200-104/C chamber, the origin will
always be null (""). If the message relates to an SDI-12
sensor connected to the chamber, the origin will be the
sensor’s SDI-12 address. Note that allowable SDI-12 addresses
are restricted to 0 through 9 for an 8200-104/C chamber.

Sequence
The sequence is an integer (-1 or 1 to 32767) used to track
messages. For each message received with a sequence number
greater than zero, an acknowledgment should be returned by
the receiving device. For the example above sent by an 8200-
104/C chamber, the controller would respond with:

"" 239 -1 "{"ack":""}"

This acknowledges receipt of message 239 from the chamber.
For messages using a sequence of -1, no acknowledgment is
expected. For most messages initiated by the controller, it is
okay to use a sequence number of -1, as most of these elicit
some response message from the chamber, negating the need
for the chamber to send a separate acknowledgment message.

Checksum
The checksum is a bitwise XOR of the JSON object. For
acknowledged messages, it should always be included. The
checksum is calculated by the receiving device (controller or
chamber) and compared to the checksum in the original mes-
sage. This ensures the message has not been corrupted. For
acknowledged messages where the checksums do not match,
a non-acknowledgment would be sent:

"" 239 -1 "{"nak":""}"

Example functions for computing the checksum using
Python and the Arduino IDE are given in Figure 2. These
functions accept the JSON object as a string and return the
checksum as an integer value.

Figure 2. Example functions for computing the check-
sum using Python and the Arduino IDE.

JSON object
The JSON object contains the data items passed between the
chamber and controller. Each data item is composed of a
key:value pair. 8200-104/C chambers support a wide array of
communication and configuration objects.

Tools exist in Python and the Arduino IDE for constructing
and parsing JSON objects. For Python, manipulation of
JSON is included in the standard JSON library. For the Ardu-
ino IDE, the third-party library ArduinoJson
(arduinojson.org) provides a very efficient implementation.

Both environments also provide built-in functions for serial
communication. The examples below show how to:

Deserialize JSON in the respective environments

Issue an identity request

Parse the contents of the response message

The examples in Listing 1 and Listing 2 show how to seri-
alize and deserialize JSON in both environments and how to
publish a response to an identity request.

Note: The code for these scripts may be copied from the
listings below or may be downloaded from
licor.com/documents/utw5f12b93wo8d59y7zebjlk90qpvg5
n.

3

https://arduinojson.org/
https://www.licor.com/documents/utw5f12b93wo8d59y7zebjlk90qpvg5n
https://www.licor.com/documents/utw5f12b93wo8d59y7zebjlk90qpvg5n

Listing 1. An example Python script.

1 #Example Python script for requesting and parsing
chamber identity

2 import json
3 import serial
4 import time
5
6 ser=serial.Serial('/dev/serial0', 115200)
7
8 #XOR checksum function for Python
9 def checkSumXOR(message):
10 m=bytearray(message,'utf-8')
11 c=0
12 for b in m:
13 c^=b
14 return c
15
16 #Example function for parsing a message
17 #Returns a dictionary containing the contents of the

json object
18 def messageParser(message):
19 try:
20 #Origin=osc[0], sequence=osc[1], checksum=osc

[2]
21 osc=message[:message.find('"{')].split(' ')
22 object=message[message.find('{'):-2]
23 #Validate the checksum and send an

acknowledgement if they match
24 if int(osc[2]) is not -1:
25 ack='nak'
26 if checkSumXOR(object)==int(osc[2]):
27 ack='ack'
28 ser.write(bytes('"" '+str(osc[1])+' -1 "

{"'+ack+'":""}"\n','utf-8'))
29 return json.loads(object)
30 except:
31 return {'message':'error'}
32
33 tlast=0
34 while True:
35 tnow=time.time()
36 if ser.inWaiting()>0:
37 print (messageParser(ser.readline().decode

('utf-8')))
38 #Request an identity message every 5 seconds
39 if tnow-tlast>=5:
40 tlast=tnow
41 ser.write(bytes('"" -1 -1 "

{"identify":""}"\n','utf-8'))

Note that in the Arduino IDE example, the choice to declare
the buffers for working with the JSON objects inside a func-
tion separate from the main loop is deliberate and stems
from how these buffers are handled by ArduinoJson. Refer to
the library’s documentation for more details.

Listing 2. An example Arduino IDE script.

1 //Example Arduino script for requesting and parsing
chamber identity

2 #include "ArduinoJson-v5.13.3.h"
3
4 int checkSumXOR(const String& message){
5 int b=message.length()+1;
6 byte m[b];
7 message.getBytes(m,b);
8 int c=0;

9 for(int i=0;i<b;i++){c^=m[i];}
10 return c;
11 }
12
13 //Example function for parsing a message
14 bool messageParser(const String& message){
15 bool type=false;
16 //Parse the origin (-1 for null orgins), sequence

number, and checksum
17 int origin=-1;
18 if(message.charAt(1)!="\""){origin=int

(message.charAt(1));}
19 int sequence = message.substring(message.indexOf

("\" ")+2,message.indexOf(" ",message.indexOf("\"
")+2)).toInt();

20 int checksum = message.substring(message.indexOf("
",message.indexOf("\" ")+2),message.lastIndexOf("
{")).toInt();

21 //Validate the checksum and send an acknowledgement
if they match

22 if(checksum!=-1){
23 String ack="nak";
24 if(checksum==checkSumXOR(message.substring

(message.indexOf("{")-1,message.lastIndexOf("}")+2)))
{ack="ack";}

25 Serial.println("\"\" "+String(sequence)+" -1 \"
{\""+ack+"\":\"\"}\"");

26 }
27 StaticJsonBuffer<150> recieveBuffer;
28 JsonObject& chamber_json =

recieveBuffer.parseObject(message.substring
(message.indexOf("{"),message.lastIndexOf("}")+1));

29 if(chamber_json.success()){
30 type=true;
31 if(chamber_json.containsKey("identity")){
32 String id_type=chamber_json["identity"]

["type"]; //Gets type from an identity object
33 }
34 if(chamber_json.containsKey("chamber_status")){
35 String chamber_status=chamber_json["chamber_

status"]; //Gets chamber state from an chamber_status
object

36 }
37 }
38 recieveBuffer.clear();
39 return type;
40 }
41
42 void setup() {
43 Serial.begin(115200);
44 }
45
46 int tlast=0;
47 void loop() {
48 int tnow=millis();
49 if(Serial.available()){messageParser

(Serial.readStringUntil('\n'));}
50 //Request an identity message every 5 seconds
51 if((tnow-tlast)>=5000){
52 tlast=tnow;
53 Serial.println("\"\" -1 -1 \"

{\"identify\":\"\"}\"");
54 }
55 }

4

Commands
There are many commands you can use to interface with the
8200-104/C long-term chambers and connected devices.

Identify
An identify command asks the chamber to identify itself
and any connected SDI-12 sensors. The controller should
always use a sequence number of -1 for these messages. In
response, the chamber will send one or more identity
objects. The chamber may also send error objects if any
SDI-12 sensors use an address outside 0 through 9. A
chamber_status will also be sent in response. To query
for an identity, the controller sends:

"" -1 -1 "{"identify":""}"

Here are some example responses from the chamber:

"" 1 88 "{"identity":{"type":"ltc","model":"8200-
104","sn":"82L-0198","sver":"0.0.78","hver":"2"}}"

"0" 2 9 "{"identity":{"type":"sdi-12","model":"STEVENSW-
093640","sn":"ST4SN00256922","sver":"2.9","hver":"12"}}"

"" 3 125 "{"chamber_
status":"closed","type":"ltc","sn":"82L-0198","diag_
code":0}"

When a previously identified SDI-12 sensor is removed, the
chamber will send an unsolicited device_removed mes-
sage with the origin corresponding to the sensor’s address.

Here is an example message for a removed SDI-12 sensor:

"0" 4 109 "{"device_removed":{"type":"sdi-12"}}"

Chamber
A chamber command is used to tell the chamber to open,
close, or park. To close the chamber, for example, the con-
troller sends:

"" -1 -1 "{"chamber":"close"}"

The chamber will respond to a chamber command with one
or more chamber_status objects indicating its current
position or motion (i.e., closing, closed, opening,
open, parking, parked, manual_move, or
unknown). The chamber also sends these objects whenever it
starts or stops a move operation. An unknown state will be
reported immediately after powering on (before any move
operation has occurred) and after a motor stall.

Here is an example chamber_status message:

"" 1 28 "{"chamber_
status":"closing","type":"ltc","sn":"82L-0198","diag_
code":0}"

Measurement
A measurement command tells the chamber to start or
stop sending data. Once in measurement mode, the chamber
will stream chamber data once per second and SDI-12 sensor
data every time it is read. The measurement rate of SDI-12
sensors depends upon the min_interval setting in the
SDI-12 configuration. To start measurement mode, the con-
troller sends:

"" -1 -1 "{"measurement":"start"}"

Here is an example of the type of data the chamber will
return:

"" 1 13 "{"data":{"voltage_in":24.18,"motor_
current":0.00,"board_
temp":24.55,"temperature":21.77,"light":-1},"source":
{"type":"ltc","sn":"82L-0198"}"diag_code":0}"

Configuration
A config command allows the controller to set the cham-
ber open position and parameters related to auxiliary sensors.
Each sensor has a default measurement configuration it will
use unless overwritten by a config command.

The chamber will respond with a config_response after
every config command. The response indicates if the con-
figuration was successful or if it failed and includes any error
messages.

Here is an example response to a successful config:

"" 1 9 "{"config_response":"success"}"

Chamber open position
The chamber_open_position command configures the
open position using a value from 0 to 180 degrees. Multiples
of 30 degrees are expected, but not required. The closest pos-
sible position to the requested position will be used, but an
exact representation is not possible in many cases. This value
is stored in non-volatile memory.

"" -1 -1 "{"config":{"chamber_open_position":120}}"

Remove all sensors
The remove_all_sensors command removes all SDI-12
sensor information on the chamber and restores the default

5

sensor configuration.

"" -1 -1 "{"config":{"remove_all_sensors":""}}"

Light
The light command sets the light sensor type (LI-190R or
LI-200R) and calibration multiplier for a light sensor con-
nected to the chamber.

"" -1 -1 "{"config":{"light":{"type":"LI-
190R","multiplier":-112.2}}}"

Config SDI-12
The sdi-12 command sets information for one SDI-12
sensor connected to the chamber. The range for the address
field is 0 through 9, inclusive. The min_interval value is
the sampling interval (in seconds) for the sensor. Consult the
manufacturer's documentation to choose an appropriate
interval for the sensor. The command value defines the SDI-
12 sensor measurement set.

The fields value defines what parameters from the meas-
urement set are returned with sensor data from the chamber.
The fields value is an array with the position(s) of the desired
parameter(s) from the measurement set. Sending an empty
array tells the chamber to return the complete measurement
set. If the chamber receives a configure command using the
same address as was used on a previous sensor, the new con-
figuration will replace the existing one.

Here are some example configurations for SDI-12 sensors:

"" -1 -1 "{"config":{"sdi-12":{"address":"8","min_
interval":60,"command":"M2","fields":[0,2]}}}"

"" -1 -1 "{"config":{"sdi-12":{"address":"0","min_
interval":15,"command":"M","fields":[0,1,2,8]}}}"

"" -1 -1 "{"config":{"sdi-12":{"address":"1","min_
interval":60,"command":"M","fields":[]}}}"

Query Configuration
A query_config command queries the chamber for its cur-
rent configuration. The chamber responds with one or more
messages containing a config_data object. If the related
configuration is not set or empty, the config_data object will
contain a null string.

Chamber open position
The chamber_open_position query requests the cham-
ber open position. The controller sends:

"" -1 -1 "{"query_config":"chamber_open_position"}"

The chamber responds with the current chamber open pos-
ition:

"" 1 9 "{"config_data":{"chamber_open_position":120}}"

LTC sensors
The ltc_sensors query requests the configuration of the
air temperature and light sensor settings. The controller
sends:

"" -1 -1 "{"query_config":"ltc_sensors"}"

Here are two example responses from the chamber:

"" 1 121 "{"config_data":{"light":{"type":"LI-
190R","multiplier":-2912.2}}}"

"" 2 41 "{"config_data":{"temperature":""}}"

Query config SDI-12
The sdi-12 query requests the configuration of all con-
nected SDI-12 sensors. The controller sends:

"" -1 -1 "{"query_config":"sdi-12"}"

The chamber responds with one message, similar to the
example below, for each configured SDI-12 sensor.

"" 1 84 "{"config_data":{"sdi-12":{"address":"0","min_
interval":60,"command":"M","fields":[0,1,2,7,8]}}}"

Serial number
The serial_number query requests the chamber serial
number. The controller sends:

"" -1 -1 "{"query_config":"serial_number"}"

Here is an example response from the chamber:

"" 1 114 "{"config_data":{"serial_number":"82L-0198"}}"

6

Model number
The model_number query requests the chamber model
number. The controller sends:

"" -1 -1 "{"query_config":"model_number"}"

Here is an example response from the chamber:

"" 1 100 "{"config_data":{"model_number":"8200-104"}}"

State
A state command is used to modify the enabled state of a
given sensor by sending a state of enable or disable. By
default, the light and chamber temperature sensors are
enabled and SDI-12 sensors are disabled. The chamber
responds with a state_response of success for a valid
state command or with an error in the case of an unre-
cognized or invalid command:

"" 1 116 "{"state_response":"success"}"

Here are example commands to enable the light and cham-
ber temperature sensors :

"" -1 -1 "{"state":"enable","light":""}"

"" -1 -1 "{"state":"enable","temperature":""}"

To enable an SDI-12 sensor, include the sensors address as
the value for the sdi-12 key:

"" -1 -1 "{"state":"enable","sdi-12":"2"}"

SDI-12
Here the sdi-12 command sets the chamber to transparent
mode. This allows any arbitrary command to be passed to the
SDI-12 bus to report back the full bus response. If no
response is received from the bus, the chamber responds with
an error. Transparent commands will not be handled if the
chamber is in measurement mode. The maximum allowed
length of the SDI-12 command is 15 characters. For example:

"" -1 -1 "{"sdi-12":"0D0!"}"

If an SDI-12 sensor is connected to the chamber with address
0, the chamber forwards the sensor’s response to D0 in an
sdi-12_rsp object:

"" -1 -1 "{"sdi-12_rsp":"0+0.000+0.002+23.9","code":""}"

Errors
Errors are sent when an error state occurs. Errors can be asso-
ciated with one of the previously described commands or
encountered by the chamber unassociated with any request
from the controller.

The error type provides the general type for the error that
occurred, and detail provides a text description of the
error. The type will have one of the following values:
message, motor, eeprom, sdi-12, light,
temperature, board_temp, voltage_in.

SDI-12 errors include the sensor address (addr) where the
error occurred. Motor errors include a move_stats object
with details about the motor operation and power supply
when the error occurred. All error messages include a dia-
gnostic code (diag_code) analogous to that provided with
chamber_status.

Here are some example error messages:

"" 1 69 "{"error":
{"type":"temperature","detail":"Thermistor open"},"diag_
code":33}"

"" 2 38 "{"error":{"type":"sdi-
12","addr":"Z","detail":"Detected SDI-12 device
(STEVENSW 000001, ST3SN00253634) with out-of-range
address"},"diag_code":8}"

"" 3 76 "{"error":{"type":"voltage_in","detail":"Input
Voltage low: 19.6"},"diag_code":136}"

"" 3 76 "{"error":{"type":"voltage_in","detail":"Input
Voltage low: 19.6"},"diag_code":136}"

"" 4 48 "{"error":{"type":"motor","detail":"Motor
Stall"},"diag_code":138,"move_stats":
{"movement":"opening","motor_current_ave":0.74,"motor_
current_max":2.53,"voltage_in_ave":23.70,"voltage_in_
min":22.53,"motor_ms":14754}}"

"" 5 63 "{"error":{"type":"sdi-
12","addr":"1","detail":"Device not detected"},"diag_
code":8}"

7

Diagnostic Code
The diag_code object is a bit field to identify errors. A dia-
gnostic value of 0 indicates normal operation. Other values
indicate an error. The bits in Table 6 are those used by the
8200-104/C Long-Term Chambers. For fatal errors that cause
the chamber to reboot, the error flag will remain set until the
chamber is power cycled. All other errors are cleared after
rebooting.

Bit Error description

1 Message error
2 Motor error, motor does not move or stalled during a

move
4 Issue with EEPROM
8 Issue with SDI-12 sensor or its configuration
16 Issue with light sensor or its configuration
32 Problem with chamber temperature sensor
64 Problem with temperature sensor on chamber control

board
128 Input voltage issue
256 Fatal error occurred

Table 6. Diagnostic code (diag_code) bit fields used by
the 8200-104/C chambers to indicate errors.

Resources
The resources below can provide you with more details about
using your 8200-104/C Long-Term Chamber.

LI-8250 Multiplexer manual: licor.com/8250manual

LI-8250 Multiplexer support: licor.com/8250support

Support: licor.com/env/support

Copyright © 2023 LI-COR, Inc. All rights reserved.
979-19992• 06/2023

LI-COR Biosciences
4647 Superior Street
Lincoln, Nebraska 68504
Phone: +1-402-467-3576
Toll free: 800-447-3576 (U.S. and Canada)
envsales@licor.com

LI-COR Distributor Network:
www.licor.com/envdistributors

Regional Offices

LI-COR Biosciences GmbH
Siemensstraße 25A
61352 Bad Homburg
Germany
Phone: +49 (0) 6172 17 17 771
envsales-gmbh@licor.com

LI-COR Biosciences UK Ltd.
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
United Kingdom
Phone: +44 (0) 1223 422102
envsales-UK@licor.com

https://www.licor.com/8250manual
https://www.licor.com/8250support
https://www.licor.com/env/support

	Chamber control kit
	Pneumatics
	Commands
	Identify
	Chamber
	Measurement
	Configuration
	Query Configuration
	State
	SDI-12

	Errors
	Diagnostic Code
	Resources

